# Using Combinatorial Optimization to Improve Planning and Scheduling

Ben Smith, JPL Russell Knight, JPL Richard Korf, UCLA







## **Motivation**



- Planning problems can contain optimization subproblems that interact with the overall problem.
  - TSP (observation scheduling, path planning)
  - Bin packing: downlink scheduling
- Planners are expressive but poor at comb. opt.
  - Can express the full planning problem, but . . .
  - They can't solve combinatorial optimization problems very well
- Optimization algorithms are powerful but restricted
  - Excellent at solving comb. optimization problems, but . . .
  - They can't reason about full planning problem
- Need algorithms that can exploit strengths of both.

ARW

## Example: Observation Scheduling Problem



- Take and downlink observations
- Minimize time, number downlinks



- slew time between observations
- downlink windows
- onboard memory
- downlink bandwidth
- legal observation times



## General purpose schedulers do poorly



- Planner/scheduler using uninformed iterative repair
  - Can express entire problem
  - Quickly reaches feasible but low quality solution
  - Additional time provides small gains, but soon "maxes out"
- Integer Programming
  - Takes several minutes to reach low quality feasible solution
  - Consistently gains quality with time
  - Yields optimal solutions with enough time (hours to days)
- But can we quickly reach a high quality solution?

## Exploit Combinatorial Sub-problems



- TSPTW: Find minimum-makespan observation schedule:
  - City = obervation
  - distance = slew
- Binpack: assign observations to downlinks
  - Bin = downlink opportunity
  - Item = observation
- Have excellent solvers for both of these
  - TSP has many solution algorithms (best depends on TSP properties)
  - Binpack: developed optimal solver under this task
- Need to control interactions
  - TSP solver doesn't consider downlink constraints
  - binpack solver doesn't consider TSP constraints
  - Neither solver considers additional constraints in plan model

# Optimal Bin Pack Algorithm vs. Martello & Toth





## Iterative Repair approach to combining algorithms



## Break algorithm into independent operators

- TSPTW: swap with k-opt heuristic; insert edge
- Binpack: assign item to bin; best-fit first assignment heuristic

## Map planning conflicts to solver operations

Maps moves in solver space to moves in plan space

## Specialized Algorithm Criteria

- Reason in the violated constraint space or limit the application to iterative optimization
- Reason in small, discrete steps
- The closer the candidate algorithm matches these criteria, the better it integrates with the planner and other algorithms

# Iterative Repair/Integer Programming results



- Iterative repair has best performance over "practical" area of the curve.
- Uninformed iterative repair works well on the very short time scales
- Integer programming performs best only during the impractical area of the curve.



## IP Formulation



## TSP Components based on the Grötschel & Holland Formulation

- Select edges to be included in the solution, select times for each city that respect the edge orderings.
- Why not use the Dantzig--Fulkerson--Johnson formulation?
  - Ours this is similar, but complete without exponentially many constraints.
- Why not use the Miller--Tucker--Zemlin formulation?
  - More real variables are required.

## Bin Pack based on Padberg formulation

 Start with a maximum number of bins, choose to ignore some and assign values to others.

NASA

### Swath Selection Problem





- Select instrument swaths & downlink opportunities to cover region of interest.
- Mapping schedule interacts with other mission constraints.



Express as a network flow problem.

Minimize data transport cost through network.



AR Workshop 2002

## Summary



- 'planner-in-control' interaction algorithm
- Bin-packing solver implemented for solving downlink scheduling sub-problem.
  - New optimal, anytime bin-packer
  - Existing methods do not guarantee optimality
- Swath algorithm formulation and baseline IP and QP formulations

# Using Combinatorial Optimization Algorithms to Improve Automated Planning & Scheduling



#### **TASK OBJECTIVES:**

Enable planners to solve large, complex planning problems infeasible for current technologies.

Specifically, develop algorithms to solve planning problems comprised of strongly interacting combinatorial optimization sub-problems.

#### **TECHNICAL INNOVATIONS:**

Novel coordinated search algorithms that will enable general-purpose planners and combinatorial optimizers to work together effectively.

#### **SCHEDULE:**

| Milestones                                        | FY01 | FY02 | FY03 |
|---------------------------------------------------|------|------|------|
| 'solver-in-control' algorithms                    | Х    |      |      |
| 'planner-in-control' algorithms                   |      | X    |      |
| specialized solvers for swath scheduling problems |      | х    | Х    |
| 'local-search' planner algorithms                 |      |      | Х    |

#### **NASA RELEVANCE:**

- Enable planners to solve large, complex problems infeasible for current technologies, such as:
  - Optimal planetary mapping schedules
  - Celestial mapping
  - Mission planning & design
- Enable onboard revision & generation of these plans to respond to unexpected events and opportunities.

